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DIRECT AND LARGE-EDDY SIMULATIONS OF THREE-DIMENSIONAL
COMPRESSIBLE NAVIER-STOKES TURBULENCE

1. Introduction

Recently, great effort has gone into accurate direct numerical simulation [DNS] of the

compressible Navier-Stokes equations, both in 2-D (Passot and Pouquet, 1988; Grappin et

al 1988; Gauthier, 1988; Sarkar et al 1989; Dahlburg et a! 1990; Erlebacher et a! 1990a)

and in 3-D (Feiereisen et a! 1981; Sarkar et a! 1989; Erlebacher et a! 1990b; Hossain and

Mullan, 1990; Staroselsky et a! 1990). These compressible simulations share with their

incompressible DNS counterparts the restriction to relatively low Reynolds numbers that

is required for adequate numerical resolution. For compressible flows, this low Reynolds

number restriction is compounded by several additional factors: [1] at least one additional

thermodynamic variable, e.g., the mass density, must be retained and time-advanced, and

this increases the required storage for the compressible problem; 121 as the Mach number

increases, the average diagonal component of the Taylor microscale decreases (This de-

crease in one of the significant length scales, which is related to the tendency of acoustic

waves to steepen, implies the requirement of more refined discretization as the Mach num-

ber increases (for the MHD analog cf. Dahlburg and Picone 1989)); and [3] the existence of

cubic nonlinearities in the compressible equations makes the aliasing problem potentially

more severe (cf. Canuto et a! 1988).

The most interesting compressible flows for both pure research and for engineering

purposes have much higher Reynolds numbers than those which currently can be simu-
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lated accurately with DNS. Hence, some form of modeling is required in order to obtain

sensible time-dependent results at the Reynolds numbers of interest. Several methods

have been developed to address this Reynolds number problem for incompressible flows.

These methods appear to generalize readily to the compressible case. For example, Pas-

sot and Pouquet (1988) have investigated the use of hyperviscosities. Sakell (1988) has

used second- and fourth-order artificial viscosities. Hossain and Mullan (1990) have used

eddy viscosities in an astrophysical compressible convection problem. For the alternative

Reynolds-averaging formulations see Speziale (1991).

We pursue here another approach, viz., large-eddy simulation (LES) (cf. Moin and

Kim 1982; Bardina et al 1983; Rogallo and Moin 1984; Piomelli et al 1989). We use the

particular compressible large-eddy simulation (LES) formulation of Speziale et al (1988),

hereafter SEZHu. An alternative compressible LES formulation has been furnished by

Yoshizawa (1986).

We apply the computational techniques and simulation models outlined in SEZHu

to the study of compressible turbulence. This research is directed toward implementation

of a large-eddy simulation model capable of treating highly compressible, nearly inviscid

turbulent flows. For clarity, we here study flows that are periodic in all three spatial

directions. The long-range goal of this research is aimed at exploring the feasability of using

large-eddy simulations for computing components of flows in turbulent boundary layers

around arbitrarily shaped vehicles at high speeds. At its present stage of sophistication

LES also has constraints on the size of Reynolds numbers for which it is reliable. These

constraints are more generous than those of DNS, but still fall short of what is required

to simulate, say, a complete aircraft. Nevertheless, because it requires substantially less

computer resources than DNS, LES does offer the hope of furnishing a reliable solution of

a significant component of a full configuration (provided, of course, that suitable subgrid-

scale models are available).

The structure of this paper is as follows. The governing equations, numerical algo-

rithm, and initial conditions used in the simulations are outlined in the second section. In

the third section we present the results of some new fully compressible DNS that supple-
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ment the quasi-incompressible simulations provided by Erlebacher et al (1990b), and in

the fourth section we discuss the results of LES for both quasi-incompressible and fully

compressible cases. Finally, in the fifth section we enumerate our conclusions, and describe

areas of further research.

2. Formulation of the problem

Simulation model:

Direct numerical simulations are performed of the compressible Navier-Stokes equa-

tions, written below in a familiar dimensionless form:

+ V. (pv) = 0, (1)

Opv 1v
+ V.- (w) = -V + 1 V ' or,(2)

O- + v. Vp + RepV + V. (pVT), (3)

where the viscous stress tensor aki is given by:

V2 ark OvI

3 = .v.v + ( + 19 k

and the viscous dissipation 4t is given by:

8vIk 2 0ak + ri ) v&

3x &rl (9Xk 8X I

The system is closed with an equation of state:

-M'p = pT. (4)

In the above equations the symbols have the following meanings: p =- mass density; v -

(u, v, w) = velocity; p =_ thermal pressure; T a temperature; p viscosity; -f = 1.4 -

adiabatic index for air; Moo - free-stream Mach number; Pr = .72 Prandtl number; and
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Re - Reynolds number. The density, velocity, temperature and viscosity were scaled by

reference values, with the pressure scaled by the product of the reference density and the

square of the reference velocity. The Reynolds number is based on the reference values of

the velocity, length, viscosity and density. For the isotropic turbulence problem of specific

interest in this paper the flow was assumed to be periodic with period 21r in each coordinate

direction and the viscosity was presumed to be a constant.

We have assembled and tested a computer simulation code which can perform com-

pressible large-eddy or direct numerical simulations of equations (1) - (4). The LES model

used in this code is based on the SEZHu subgrid-scale model, relevant elements of which

we now review.

In the subgrid-scale model, flow variables F are first spatially filtered,

021r 02w 02v"

F(x) = j j 7  ff G(x - z, A) F(z) d3 z,

where G is the filter function (taken to be a Gaussian plus a cutoff filter in the present

work), and A is the filter width. The turbulent fields F are then assumed to be decomposed

in the following way:

F =F+ F', (5)

in which the Favre filter is defined by:

p F (6)

Using these definitions, the dimensionless, filtered, partial differential equations which are

used in the large-eddy simulation code are the continuity equation:

T+ V. = 0, (7)

the vector momentum equation:
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-+ V. (T ) = -VT+ " +  .,(8)

and the thermal pressure equation:

5- + v. V +'p-V. v = (-f - 1)v. Vp - (Y - 1),. Vp+

(9)
(/-1Y -OT+ 1 1

___V 1 V.KVT) +-V.(-)
Re M.2 Pr Re (-

In Eq. (8) the subgrid-scale stress tensor is given by

T11 = -7(v1 - fkI~ + v'kJi + 'kVl' + t~VV),

and the subgrid-scale heat flux in Eq. (9) is:

Qk = -cp-5(OkT - kT + VtT + kT' + vk'T'),

where cp = specific heat at constant pressure. The equation of state becomes:

-YM05 = -T. (10)

Following the SEZHu approach, we model the subgrid-scale (SGS) stress as:
-- - - 1 1 - 29 x (1

kl = -(kfyl - ikI) + 2 CR " A2 I4(SkI - )'-jCI~.- - & 4I , (11)

where 6k1 - Kronecker delta. The Favre filtered rate-of-strain tensor, Ski, is given by:

-kl (&k + ,'

and its second invariant is:

f§ = Sm.. SM,.

The SGS heat flux is modelled as:

Qk = Cp p[( - V&t) - CT I21 . (12_)

II I I5



In both Eqs. (11) and (12) the first right-hand-side terms are the scale-similarity portion

of the model and the remaining part of the right-hand-side is the Smagorinsky portion.

(What we refer to here as the scale-similarity portion of the model is the model for the

sum of the Leonard and cross stresses.)

The constants in the above equations; A, CR, CI, and CT, must be specified in order

to close the model. The values recommended by SEZHu, obtained by analysis of quasi-

incompressible DNS, are:

A = 2(Ax), (13)

C R = 0.012, (14)

C1 = 0.0066, (15)

where Ax is the grid spacing for the grid used in the LES. We use these values to define the

standard case for the computations reported in this paper. The dimensionless constant,

CT, can be expressed in terms of CR and a turbulent Prandtl number, PrT:

1
CT = -- CR = 0.017 (16)

PrT

where we have used the conventional value of PrT = 0.7 instead of the value of 0.4 reported

by SEZHu. The latter value of PrT was based on analysis of a quasi-incompressible set

of DNS, and may not be general enough to apply to strongly compressible systems.

Strictly speaking, the SEZHu SGS model requires de-filtering (and subsequent re-

filtering) for the computation of the molecular viscous term in Eq. (8) and for the first,

third, and fourth terms on the right-hand side of Eq. (9). For the present LES we simplify

the computations (and avoid the potentially unstable de-filtering procedure) by simply [a]

using & rather than Y in Eq. (8), [b] setting the sum of the first and second right-hand

side terms of Eq. (9) to zero, [c] using 4(') instead of T, and [d] treating the molecular

conductivity term in Eq. (9) in a manner similar to the treatment of the viscous term in

Eq. (8).

In the DNS code, the spatial discretization is Fourier collocation in z, y and z, with

evenly spaced collocation points. A time-step splitting technique is employed which allows
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the sound waves to be integrated exactly in time (Erlebacher et al 1990b). The other terms

are advanced using a third-order, low-storage Runge-Kutta explicit time-stepping scheme.

At the end of each stage isotropic truncation is applied to ensure that only those modes

with k 2 + k 2+ k2 < (N/2) 2 are non-zero. The semi-implicit scheme enables the use of time

steps on the order of a CFL restriction in which the sound speed is neglected, a feature

which becomes increasingly valuable at lower Mach numbers.

With this algorithm, a 323 large-eddy simulation requires approximately 1.2 million

words of core memory, and approximately 2.7 seconds per time step on the NAS Cray

Y-MP. A 323 direct simulation with the same code requires only 1.3 seconds per step. But

the more relevant timing comparison is to that of the DNS code running on a 963 grid,

which takes 30 sec/step and requires roughly 3 times as many steps per unit time as the

LES computation.

In-line diagnostics include but are not limited to: [1] global quantities such as energies

(solenoidal, irrotational, kinetic and internal); viscous dissipation; RMS Mach number;

variances of significan fields; maxima and minima of significant fields; [2] spectra of many

quantities (e.g. velocity; mass density; temperature; thermal pressure; kinetic energy; en-

strophy; compressible and solenoidal kinetic energies) and; [3] various meaningful RMS

quantities at the tensor level (for example, Taylor microscales and velocity derivative skew-

ness and flatness).

3. DNS Data base

The DNS that SEZHu used in their preliminary study of the compressible subgrid-scale

model covered a limited parameter range. In fact, because not only the initial diver-

gence but also the initial time derivative of the divergence were set to zero (following the

work of Feiereisen et al 1981), the compressible component of the flow remained quite

small throughout the simulations. In the present work we have supplemented those quasi-

incompressible simulations with fully compressible ones, and also continued the former

simulations to much later times. The precise choice of parameters for the new DNS was

strongly influenced by the work of Erlebacher et al (1990a) and Sarkar et al (1989), who

have clarified the effect of initial conditions for compressible turbulence.
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For compressible turbulence it is important to distinguish the the solenoidal compo-

nent of the velocity field, denoted by vS, from the irrotational component. denoted by

v' . (We shall also refer to these two components as 'he incompressible and compressible

components, respectively.) The Helmholtz decomposition is unique for the case of isotropic

turbulence, and in Fourier space it is given by

,C k k, (17)
k2

and

" C (18)

where C, is the Fourier transform o. the velocity, and k is the Fourier wavenumber. Now

consider the integral over the computational domain of the kinetic energy per unit mass,

E = 2 j I2 dx dy dz; (19)

we shall refer to this quantity hereafte" (somewhat imprecisely) as just the kinetic energy.

Let El and Ec denote the contributions to this integral from the solenoidal and irrotational

velocity components. Let X = ECIE denote the ratio of compressible kinetic energy to the

total kinetic energy, and let pc lenote the ratio of the RMS pressure fluctuation to the

mean pressure. As shown by Sarkar et al (1989), the turbulence should, on the acoustic

time scale, appro,.ch asymptotically a state in which the non-dimensional parameter F =

7"M2 x/pC reaches unity. Here M, termed the turbulent Mach number, is the average Mach

number of the velocity fluctuations. The present fully compressible initial conditions were

chosen to cover a range of M and X, with the initial pressure fluctuations chosen so that

the initial value of F was unity. This choice avoids the boundary layer in time that would

otherwise be present for a more arbitrary, but probably less physically realistic, choice of

initial conditions (Erlebt\cher et al 1990a).

Table I summarizes the complete set of DNS that was used in the present wurk. The

initial energy spectra for the old quasi-incompressible runs (those denoted by QIC) were

chosen by Erlebacher et al (1990b) to match the experimental spectra of Comte-Bellot

and Corrsin (1962), whereas the initial energy spectra for the new runs (denoted by MC)
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had the form E(k) k4 xp(-k 2 /2k,), with the RMS velocity fluctuation set to unity. In

the new runs the initial density fluctuations were zero, implying that all of the pressure

fluctuations arose fro-. temperature fluctuations. (This choice was made to simplify the

enforcement of zero net linear momentum in the initial conditions.) The initial molecular

Reynolds number for the MC cases was 250, corresponding to an initial Taylor microscale

Reynolds number of approximately 27 for all but the MO1CO2K5 case, for which it was 53.

The table contains the initial values of E/e, where e is the total dissipation. This quantity

is a measure of the large-eddy turnover time.

A comparison of the initial energy spectra, E(k), is presented in Figure 1 for tLe cases

QIC01, M01C02, and M0C02K5. 'Ihe initial spectra for all the QIC cases were the same,

and the initial spectra for all the new cases excent the last two were the same as for the

M01C02 case (aside from the relative proportions of the incompressible and compressible

components). The energy spectra for the two QIC cases had their peaks at k = 1 and

decayed relatively slowly fo-' large k, whereas the MC cases had their peaks at larger k

and decayed relatively rapidly. Figure 1 also contains the spectra at a later stage for each

of these three cases. In all three examples shown in the figure the spectra at the later

stage exhibited a decay of more than three orders of magnitude from the peak to the

tail, and the curl at the tail was ;uite mild. This indicates that the turbulent flows were

resolved adequately. The value chosen for the molecular viscosity for the new DNS runs

was determined by the criterion that a 96' simulation be well-resolved and that even a 643

simulation be inadequate.

Figures 2 and 3 furnish the time evolution of the key diagnostics of the QIC runs.

(The results for these earlier runs aze presented here in different units from those used by

Erlebacher et al 1990b. The velocities have been divided by 6.76 N/3 and the time has

been multiplied by the same factor. This has been done so that the initial RMS velocity

fluctuation was unity, matching that f the new DNS runs. They also have been run about

an order of magnitude longer in time.) In the quasi-incompressible case QIC01 the flow

first settles into a quasi-equilibrium state with the parameter F holding relatively constant

at the small value of 0.007. This state lasts until roughly t = 3, at which time the flow

transitions rapidly into a new, quasi-equilibrium state with F z 1. The calculations for
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this case reported by Speziale et al (1988) and Erlebacher et al (1990b) were conducted

only until t = 1.34, which was before the transition. By t = 4 the resolution of the 963 DNS

became inadequate due to strong activity at small scales in the irrotational component.

The QIC04 results, shown in Figure 3, exhibit a more gradual approach to the expected

asymptotic state. Note that the initial conditions for the QIC01 and QIC04 simulations

did not meet the assumptions of the theory developed by Erlebacher et al (1990a) and

applied by Sarkar et al (1989) to predict the asymptotic state (Erlebacher 1990, private

communication). A more refined theory is required to explain the details of these two

simulations. This difference in the time scale for the transition is related to the difference

in the characteristic acoustic periods for the two cases. This issue is addressed below.

Figures 4 - 12 give the time evolution of the same key diagnostics for the MC runs.

Note that the compressible component for the new quasi-compressible case, M01C00, re-

mains negligible throughout that simulation. Nevertheless, as a function of time the non-

dimensional parameter F does approach unity for the M01C0O simulation. For all the

remaining new simulations the parameter F remains quite close to one, although typically

the fluctuations of F have increasing amplitude and longer period as time increases. These

fluctuations occur on the acoustic scale and their period is approximately r = 27r/kp ,

where k. is the wavenumber for the peak in E(k) and ' is the average sound speed (equal

to 1/M for these cases). Initially, kP t ko and r ,z 0.6M for the k0 = 10 cases and

r ; 0.12 for the k0 = 5 cases. The initial time scale of the fluctuations in F in Figures

4-12 conform to these estimates. The increase with time of the period of the fluctuations

in F corresponds to the shift in the energy spectra towards smaller wavenumbers caused

by the more rapid decay of the smaller scale velocity components - see Figure 1.)

Let us now reconsider the rate of approach to the asymptotic state for the three quasi-

incompressible runs. The acoustic periods for the cases QIC01, QIC04 and M01COO are

approximately 0.06, 0.6, and 2.5, respectively (using kp = 1 for the QIC runs and k. = 10

for M01COO). The rate of approach to the asymptotic state, and the time scale of the

fluctuations in F for the QIC04 and M01CO0 cases are consistent with estimates based

on the initial acoustic period. The transition to the asymptotic state for the QIC01 case

and the time scale of the fluctuations are both much faster than this estimate. The reason
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for this is unclear, but it is probably related to the presence of a substantial irrotational

component of dissipation in the QIC01 example. It is unlikely to be due to shocks in the

QIC01 simulation. Figure 13 displays some additional diagnostics for this case. Since the

extrema of the divergence of velocity are quite symmetrical, the work of Erlebacher et al

(1990a) allows us to conclude that shocks are not present.

The tendency of F to remain close to unity in the MC DNS provides corroboration

in 3-D of the 2-D results of Sarkar et al (1989). The parameter X typically evolves slowly,

on what appears to be the viscous time scale. It increases slightly for those cases with an

initial X less than 0.5 and decreases slightly for the remaining cases.

The kinetic energy E decays monotonically for all cases. Although the total dissipation

e also decays monotically for the QIC simulations, for the MC ones it increases initially

and then decays. The dissipation is composed of solenoidal and irrotational components,

viz., e = e + c, where

= I V x v 2 dx dy dz, (20)

and

ec = j IV. 2 dx dy dz. (21)

The initial total dissipation increases with X, by an amount precisely attributable to the

factor of 4/3 in ;c.

The peak in the total dissipation for the MC simulations is of some interest. It occurs

at t, ; O.1Re/ko, although as X increases, t, decreases slightly. For small M and X this

peak is concentrated in the solenoidal component. However, as M or X increases, the

peak shifts increasingly to the irrotational component. The recent mathematical analysis

of incompressible, isotropic turbulence by Henshaw et al (1989) suggests a possible expla-

nation for this phenomenon. They have described this initial phase (until shortly after

t') as the maximally dissipative phase. It is characterized by a relatively slow decay of

the spectrum as a function of k. The flow then evolves into a less dissipative state, with

large coherent structures and a more rapid decrease of the spectrum as a function of k.

Indeed, an analysis of the spectra of the present simulations indicates that EC(k) decays
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more slowly as the peak in the dissipation shifts toward ec. The QIC cases evidently were

begun closer to a maximally dissipative state than the MC cases due to the much slower

decay of their initial spectra.

The fluctuations in the thermodynamic variables, p, p and T, achieve quasi-equilibrium

after a few acoustic periods. Note that the density fluctuations, although initially zero, end

up larger than the temperature fluctuations. In all of the k0 = 10 cases the initial transient

phase has concluded by t = 0.4 - the dissipation has peaked and the thermodynamic

fluctuations have settled down to their asymptotic proportions.

Figure 14 displays some additional diagnostics for the case M01C02. (Although this

case is occasionally singled out in this paper for special attention, similar behavior is

exhibited by the other new cases.) The curves for the extrema of the velocity divergence are

virtually anti-symmetric, which, as stated before, is indicative of compressible turbulence

in which shocks are absent (Erlebacher et al 1990a; Picone and Dahlburg, 1991). The

pressure dilatation term, p'V - v, is strongly oscillatory but its average value is much

smaller than the compressible dissipation. This provides further support for the neglect of

the pressure dilatation term employed by Sarkar and Balakrishnan (1990) in their proposed

Reynolds stress model for compressible turbulence. The skewness and flatness both reach

quasi-equilibrium by t = 0.4. The corresponding plots for the remaining new cases reveal

that as M or X increase the skewness becomes more negative and the flatness more positive.

Figure 15 displays the energy spectra at various early times for the case M01C02.

The energy spectra have the slowest decay (as a function of k) near the time of maximal

dissipation (roughly at t = 0.25), and at later times they decay as a function of k at a

faster rate (see Figure 1).

4. Large-eddy simulations

Quasi-incompressible results:

As our first test of the LES model we use the direct numerical simulations described

by SEZHu, which are the two QIC cases in Table I, together with the case M01C00, which

is a new quasi-incompressible case with a vastly different initial energy spectrum.
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The QIC data generated by SEZHu at 96' have been stored at six equally spaced

times, including the initial conditions. For purposes of comparing the 963 DNS results

with the LES, we apply a 323 cutoff filter to this data (to project it onto the 323 grid), and

then apply the same Gaussian filter that is used in the LES runs. The filtered 963 data

at t = 0 serves as the initial conditions for the 32 LES run, with all other parameters

such as Reynolds and Mach numbers remaining the same. Therefore, the comparison of

the LES and DNS results is presented for the resolved (or large-scale) fields. To close the

SGS model, we use for now the coefficients CR and C1 given by SEZHu, but set CT to

correspond to PrT = 0.7 (see Eqs. (13)-(16)). At subsequent intervals, we compare the

filtered 963 data with the 323 LES results.

The LES results for the two QIC cases are shown in Figures 16 and 17 and they

are compared there with the fine-grid DNS results. In these two cases the resolved field

contained 66% of the total kinetic energy, or, in other words, the subgrid-scale energy

comprised 34% of the kinetic energy. (SEZHu also presented quasi-incompressible results

for a fluctuating Mach number of 0.6. This case happens to be perilously close to the upper

limit of fluctuating Mach number for this particular energy spectrum: at values of M much

larger than 0.6 the 963 DNS breaks down because the fluctuations are so large that they

produce negative temperatures. The LES for the QIC06 case has similar problems and

therefore no results are presented for it.)

The compressible kinetic energy comprises less than 0.1% of the total kinetic energy,

as expected for these quasi-incompressible cases. The SEZHu model produces quite good

predictions for the evolution of the incompressible kinetic energy and for the density and

temperature fluctuations. The predictions for the compressible kinetic energy are less

accurate. The errors for it, however, are not particularly bothersome since it makes an

inconsequential contribution to the total kinetic energy in these quasi-incompressible cases.

Figure 18 provides a similar comparison for the additional, new quasi-incompressible

case M01C00. The coarse-grid LES was begun at t = 0.4, a time which is beyond the

peak in the dissipation and after the turbulence statistics have settled down. Here we find

even better agreement between the coarse-grid LES results and those of the fine-grid DNS
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for the solenoidal kinetic energy. This is especially encouraging, considering that for this

example, the resolved portion of the kinetic energy is only 35% of the total. The errors in

the LES predictions for the compressible kinetic energy and the temperature and density

fluctuations are somewhat larger. However, all three of these quantities are rather small

and these errors have very little effect on the rate of decay of the turbulence.

We thus are satisfied that the model performs adequately in the quasi-incompressible

regime. However, it is clear that the model must be tested on flows which are highly

compressible. We now turn to a discussion of results from simulations with an appreciable

compressible kinetic energy component.

Strongly compressible results:

As in the previous section, two simulations are presented for each case selected: a

963 DNS and a 323 LES. We begin with the application of the SEZHu model with the

standard parameters for most of the compressible (X > 0) MC cases listed in Table I. The

results are given in Figures 19-24. The LES perform quite well, especially considering the

large fraction of kinetic energy which resided in the subgrid scales - 65% for the k0 = 10

cases and 32% for the k0 = 5 case. Indeed, the LES predictions for the solenoidal kinetic

energy and the temperature fluctuations are comparable in accuracy to those for the earlier

quasi-incompressible cases, whereas the predictions for the now non-negligible compressible

kinetic energy and the density fluctuations are typically better.

These data allow us to draw same general conclusions about the performance of the

SEZHu model as a function of the parameters M and x. [1] The SGS model is slightly

too dissipative for E, and this error decreases with increasing AM, but increases with

increasing X. [2] The SGS model is too dissipative for Ec, and this error decreases with M

and decreases with X. [3] The most important conclusion, however, is that the SEZHu

subgrid-scale model produces LES results that make predictions for the temporal decay of

the total kinetic energy decay that are just as good for strongly compressible flow as for

incompressible flow. Indeed, in some respects, the model performs better for the strongly

compressible cases than for the quasi-incompressible ones.
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Next, we consider variations in the SGS model, focusing on the case M01C02. The

series of LES runs we have performed for this case are summarized in Table II. The run

labelled MO1C02a in Table II, the LES case with the standard coefficients, is shown in Fig-

ure 19 along with results of runs for which only the generalized Smagorinsky portion(case

MO0C02b) or only the scale-similarity portion (case M01C02c) are active. A similar com-

parison for the case M01C06 is furnished in Figure 21. Clearly, most of the SGS dissipation

is furnished by the Smagorinsky component, although some SGS dissipation is produced

by the scale-similarity contribution.

The following series of LES focus on the effects of the Smagorinsky coefficients, CR,

Ci, and CT. In these and subsequent LES we retain the scale-similarity component. Figure

25 displays the effects of changing the value of the Smagorinsky constants up or down by

10% from the values recommended by SEZHu on the basis of a priori tests for a quasi-

incompressible DNS data base (cases M01C02a, M01C02d, and M01C02e). Reducing the

values by 10% produces near perfect agreement for the decay of the solenoidal kinetic

energy but still leaves a substantial error in the compressible kinetic energy.

We consider now the contribution arising from that component of the SEZHu model -

the one with the coefficient C1 - which might be expected to contain strong compressibility

effects. The relevant cases here are M01C02a, M01C02f, M0C02m, and M01C02n. These

cover a range of Ci from 0 to 50 times the standard value of 0.0066. The results are

summarized in Figure 26. The graphs for the cases with CI = 0, C1 = 0.0066 and

CI = 0.066 are virtually indistinguishable. (We haven't even bothered to plot the first of

these in the figure.) A 50-fold increase in C1 , however, produces a marked reduction in

the decay of EC (and also slows the decay of the pressure and temperature fluctuations),

while having little effect upon E".

The effect of the turbulent Prandtl number is illustrated in Figure 27. The basis of

comparison is run M01C02e, in which CR has been tuned to give the best predictions of E"

and for which CI has an inconsequential effect on the LES results. In the comparison runs

C1 = 0, CR = 0.0108 and PrT is half (case MO1C2j) and 1.5 times (case M01C02k) its

nominal value of 0.70, respectively. We observe that PrT has little effect upon E", whereas
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decreasing it has a favorable effect upon Ec, and an adverse effect upon the temperature

fluctuations. Increasing PrT has the reverse effects.

Finally, we illustrate the effect of filter width upon the results. All of the LES reported

above used a filter width of twice the grid size on the coarse, 32' grid. Figures 28 and

29 show the results for LES using the SEZHu model, but with filter widths of one and

four times theo grid size. (cases MO1CO2h and M01C02i, respectively). As expected, the

relative errors increase with the filter width.

To summarize what this series of tests has revealed about the influence of the various

components of the SEZHu compressible SGS model: [1] The generalized Smagorinsky

component produces most, but not all, of the SGS dissipation. [21 As C1 is increased the

dissipation of the compressible component is decreased, while the solenoidal component is

barely affected. [3] As CT is decreased the dissipation of the compressible component is

decreased, while the solenoidal component is barely affected. [4] The principal Smagorinsky

constant, CR, should be reduced by about 10% from its recommended value.

The preceding a posteriori tests of the SGS model indicate that better agreement

can be obtained for LES of the case M01C02 by choosing CR = 0.0108, C1 = 0.33, and

CT = 0.0231 (case M01C02p). The results of such a LES with these revised constants are

given in Figure 30. The results using these constants are excellent for all the significant

flow variables. We have included in Figure 30 a comparision with a coarse-grid, 32' DNS

run. This was done to indicate the effect of the SGS model. The coarse-grid DNS makes

predictions which are much poorer than those obtained with the SGS model.

Within the context of the SEZHu model, however, these optimal constants are far

from universal over the range of M and X. Figures 31 and 32 display the results of

LES with these revised constants for the cases M01C06 and M03C02, respectively. These

resu'ts are consistent with our earlier observations on how the errors in the kinetic energy

components vary with M and X. The success in tuning the model constants for the M01C02

case indicates that including an empirical dependence of CR, C1, and CT upon M and

X might lead to more universally acceptable predictions of the large-eddy simulations. A

more preferable alternative, however, would be to modify the SEZHu model itself so that

it produces acceptable predictions without ad hoc modifications to the "constants".
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5. Conclusions

The direct numerical simulations reported in Section 3 for the most part conformed to the

recently developed theory of compressible turbulence by Erlebacher et al (1990a). However,

the extended calculation of the M = 0.1 QIC case did reveal one feature, namely, the rapid

transition to the asymptotic state, that is currently unexplained. An interesting feature

of the MC cases was shift in the peak in the dissipation from the incompressible to the

compressible component as the level of compressibility increased.

The results from the large-eddy simulations of compressible turbulence are encourag-

ing. Even with the originally recommended coefficients for the SEZHu model the predic-

tions are rather good for the evolution of such compressible quantities as the compressible

component of kinetic energy and the fluctuations in the thermodynamic variables. Al-

though the LES predictions can be improved for particular cases by changes in the model

constants, the appropriate changes are apparently a function of compressibility (M and X).

A more complete set of LES could presumably furnish enough data to suggest an empirical

dependence of these "constants" on the compressibility parameters. The development of

a revised subgrid-scale model that required no explicit adjustment of the constants with

compressibility would be preferable.

Compressible LES technology has been tested in this paper for only the simplest case.

It should also be verified for isotropic turbulence containing shocks, and then it should be

extended to such canonical flows as homogeneous, uniform shear flow. Ultimately, it must

be demonstrated for inhomogeneous, wall-bounded flows and for complex geometries.
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TABLE I.

Case M. x TRe ko Eo/co

QICOl 0.1 0.0 22.74 1.85
QIC04 0.4 0.0 22.74 1.86
MO1000 0.1 0.0 0.0000 250.0 10 1.18
M01C02 0.1 0.2 0.0626 250.0 10 1.11
M01C04 0.1 0.4 0.0881 250.0 10 1.04
MOIC06 0.1 0.6 0.1082 250.0 10 0.98
M01008 0.1 0.8 0.1252 250.0 10 0.93
M02C02 0.2 0.2 0.1191 250.0 10 1.11
M03002 0.3 0.2 0.1663 250.0 10 1.11
M01002K5 0.1 0.2 0.0626 250.0 5 5.19
MO1002K5R 0.1 10.2 0.0626 125.0 1 5 1 2.59
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TABLE II. LES Runs (Standard Case)

Run s.s.model CR Ci CT Delta

M01C02a on .0120 .00660 .0170 2

MO1CO2b off .0120 .00660 .0170 2
MO1CO2c on .0000 .00000 .0000 2

MO1C02d on .0132 .00726 .0189 2

MO1CO2e on .0108 .00594 .0154 2
MOI02f on .0120 .00000 .0170 2
MO1CO2g on .0108 .00660 .0154 2
MO1CO2h on .0120 .00660 .0170 1
MO1CO2i on .0120 .00660 .0170 4
MO1CO2j on .0108 .00000 .0077 2
MO1CO2k on .0108 .00000 .0231 2
M01C021 on .0108 .00000 .0034 2
MO1CO2m on .0120 .06600 .0170 2
MO1C02n on .0120 .33000 .0170 2
MOl02o on .0108 .33000 .0154 2
MO1CO2p on .0108 .33000 .0230 2
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Fig. 2 - Time evolution of key diagnostics for 96 3 DNS run QICOl: (a) X and F; (b) p,,,,, p'.
and T,,,,; (c) E', E', and F; and (d) E', J, and E.
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Fig. 3 - Time evolution of key diagnostics for 963 DNS run QIC04: (a) xand F; (b) P, P,.
and T.,; (c) Es, Ec, and E; and (d) e', fC, and e.
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Fig. 4 - Time evolution of key diagnostics for 96 3 DNS run MOlCOO: (a) X and F; (b) p. ~~s
and T,, (c) Es, Ec, and E; and (d) e', ec and e.
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Fig. 5 - Time evolution of key diagnostics for 96 3 DNS run MOIC02: (a) X and F; (b) p,. p,,
and T,; (c) E5, Ec, and E; and (d) e-, ec, and iE.
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Fig. 6 - Time evolution of key diagnostics for 96 3 DNS run MOIC04: (a) x and F; (b) p,,. p,
and T,,; (c) Es, E', and E; and (d) e', e', and Ez.
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Fig. 8 - Time evolution of key diagnostics for 96 3 DNS run MOIC08: (a) x and F, (b) p,,, p,~
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Fig. 9 - Time evolution of key diagnostics for 96~ DNS run M02C02: (a) X and F; (b) p.,,, p.,
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Fig. 10 - Time evolution of key diagnostics for 96 3 DNS run M03C02: (a) X and F; (b)
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Fig. 13 - Time evolution of additional key diagnostics for 963 DNS run QICOI: (a) min and max
V •v; (b) pressure dilitation; (c) skewness; and (d) flatness.
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Fig. 14 - Time evolution of additional key diagnostics for 961 DNS run MOIC02: (a) min and max
V -v; (b) pressure dilitation; (c) skewness; and (d) flatness
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Fig. 16 - LES on a 32 3 grid of the case QICOl using the SEZHu model with its recommended
rn-nstants. The results are compared with a well-resolved, 96 3 DNS

37



M=0.4 QIC standard model

90 1 0.03 1 1

3 3 LESAAA

80 A 96 3DNSA

0.02

Es 70 0 N Prms .r

60 0.01

50 ' a0.00

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.06 * 0.045 *

AA A 0.040
0.04 A A

0.035
Ec Tr

0.02 0.030
00.02

0.0205

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

time time

Fig. 17 - LES on a 32 3 grid of the case QICO4 using the SEZHu model with its recommended
constants. The results are compared with a well-resolved, 96 3 DNS
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Fig. 18 -LES on a 323 grid of the case MOICOO using the SEZHu model with its recommended
constants. The results are compared with a well-resolved, 963 DNS
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constants (case MO1C02a). The results are compared with a well-resolved, 963 DNS. Also shown
are the results for LES in which only the scale-similarity portion and only the Smagorinsky portion
are employed
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Fig. 20 - LES on a 323 grid of the case MOIC04 using the SEZHu model with its recommended
constants. The results are compared with a well-resolved, 963 DNS.
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Fig. 21 - LES on a 323 grid of the case MO1C06 using the SEZHu model with its recommended
constants. The results are compared with a well-resolved, 963 DNS. Also shown are the results for
LES in which only the scale-similarity portion and only the Smagorinsky portion are employed.
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Fig. 22 - LES on a 32 3 grid of the case M02C02 using the SFZJ~u model with its recommended
constants. The results are compared with a well-resolved, 96' DNS.
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Fig. 23 - LES on a 32 3 grid of the case M03C02 using the SF2J~u model with its recommended
constants. The results are compared with a well-resolved,%36 DNS.
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Fig. 24 - LES on a 323 grid of the case MO1CO2K using the SEZF~u model with its recommended
constants. The results are compared with a well-resolved, 963 DNS
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M=0.1 x=0.2  variation of CR
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Fig. 25 - LES on a 323 grid of the case MOICO2 using the SEZHu model with its recommended
values of CR and C, and CT (case MO1C02a), with values 10% higher (case MOIC02d), and with

values 10% lower (case MOIC02e). The results are compared with a well-resolved, 963 DNS.
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M=0.1 X=0. 2  variation of C,
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Fig. 26 - LES on a 323 grid of the case MOIC02 using the SEZHu model with its recommended
values of CR and CT, but with C, = .0066 (case MO1C02a), with C, = .066 (case MO1C02m), and
with C, = .330 (case MO1C02n). The results are compared with a well-resolved, 963 DNS.
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Fig. 27 - LES on a 323 grid of the case M01C02 using the SEZHu model with CR = 0.0108 and
C, = 0.0066, but with CT = .0154 (case MO1C02g), with CT = .077 (case MO1C02j), and with
Cr = .0231 (case MOIC02k). The results are compared with a well-resolved, 963 DNS.
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Fig. 28 - LES on a 32 3 grid, but with Af' = 1, of the case MOIC02 using the SEZF~u model with its
recommended constants (case MO1CO2h). The results are compared with a well-resolved, 96~ DNS.
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Fig. 29 - LES on a 323 grid, but with Af = 4, of the case MO1C02 using the SEZHu model with its
recommended constants (case MO1C02i). The results are compared with a well-resolved, 963 DNS.
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Fig. 30 - LES on a 32 3 grid of the case MO1C02 using the SEZHu model with its revised constants
and with its recommended constants. The results are compared with a well-resolved, 96~ DNS and
with a poorly resolved 32 3 DNS.
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*Fig. 31 - LES on a 32 3 grid of the case MOIC06 using the SEZ~iu model with its revised constants
and with its recommended constants. The results are compared with a well-resolved, 96 3 DNS.

52



M=0.3 x=0.2  standard vs. revised
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Fig. 32 - LES on a 32 3 grid of the case M03C02 using the SFZHu model with its revised constants
and with its recommended constants. The results are compared with a well-resolved, 96 3 DNS.
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